Regression Convolutional Neural Network for Automated Pediatric Bone Age Assessment From Hand Radiograph.

Journal: IEEE journal of biomedical and health informatics
PMID:

Abstract

Skeletal bone age assessment is a common clinical practice to investigate endocrinology, and genetic and growth disorders of children. However, clinical interpretation and bone age analyses are time-consuming, labor intensive, and often subject to inter-observer variability. This advocates the need of a fully automated method for bone age assessment. We propose a regression convolutional neural network (CNN) to automatically assess the pediatric bone age from hand radiograph. Our network is specifically trained to place more attention to those bone age related regions in the X-ray images. Specifically, we first adopt the attention module to process all images and generate the coarse/fine attention maps as inputs for the regression network. Then, the regression CNN follows the supervision of the dynamic attention loss during training; thus, it can estimate the bone age of the hard (or "outlier") images more accurately. The experimental results show that our method achieves an average discrepancy of 5.2-5.3 months between clinical and automatic bone age evaluations on two large datasets. In conclusion, we propose a fully automated deep learning solution to process X-ray images of the hand for bone age assessment, with the accuracy comparable to human experts but with much better efficiency.

Authors

  • Xuhua Ren
    School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
  • Tingting Li
    Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China.
  • Xiujun Yang
  • Shuai Wang
    Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, China.
  • Sahar Ahmad
  • Lei Xiang
    Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, China.
  • Shaun Richard Stone
  • Lihong Li
  • Yiqiang Zhan
  • Dinggang Shen
    School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
  • Qian Wang
    Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China.