Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI.

Journal: Radiology
Published Date:

Abstract

Purpose To compare the diagnostic performance of radiomic analysis (RA) and a convolutional neural network (CNN) to radiologists for classification of contrast agent-enhancing lesions as benign or malignant at multiparametric breast MRI. Materials and Methods Between August 2011 and August 2015, 447 patients with 1294 enhancing lesions (787 malignant, 507 benign; median size, 15 mm ± 20) were evaluated. Lesions were manually segmented by one breast radiologist. RA was performed by using L1 regularization and principal component analysis. CNN used a deep residual neural network with 34 layers. All algorithms were also retrained on half the number of lesions (n = 647). Machine interpretations were compared with prospective interpretations by three breast radiologists. Standard of reference was histologic analysis or follow-up. Areas under the receiver operating curve (AUCs) were used to compare diagnostic performance. Results CNN trained on the full cohort was superior to training on the half-size cohort (AUC, 0.88 vs 0.83, respectively; P = .01), but there was no difference for RA and L1 regularization (AUC, 0.81 vs 0.80, respectively; P = .76) or RA and principal component analysis (AUC, 0.78 vs 0.78, respectively; P = .93). By using the full cohort, CNN performance (AUC, 0.88; 95% confidence interval: 0.86, 0.89) was better than RA and L1 regularization (AUC, 0.81; 95% confidence interval: 0.79, 0.83; P < .001) and RA and principal component analysis (AUC, 0.78; 95% confidence interval: 0.76, 0.80; P < .001). However, CNN was inferior to breast radiologist interpretation (AUC, 0.98; 95% confidence interval: 0.96, 0.99; P < .001). Conclusion A convolutional neural network was superior to radiomic analysis for classification of enhancing lesions as benign or malignant at multiparametric breast MRI. Both approaches were inferior to radiologists' performance; however, more training data will further improve performance of convolutional neural network, but not that of radiomics algorithms. © RSNA, 2018 Online supplemental material is available for this article.

Authors

  • Daniel Truhn
    Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany (J.S., D.B.A., S.N.); Institute of Computer Vision and Imaging, RWTH University Aachen, Pauwelsstrasse 30, 52072 Aachen, Germany (J.S., D.M.); Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (D.T., M.P., F.M., C.K., S.N.); and Faculty of Mathematics and Natural Sciences, Institute of Informatics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (S.C.).
  • Simone Schrading
    From the Departments of Diagnostic and Interventional Radiology (D.T., S.S., H.S., C.K.) and Institute of Imaging and Computer Vision (C.H., D.M.), RWTH Aachen University, Aachen, Pauwelsstr 30, 52074 Aachen, Germany.
  • Christoph Haarburger
    From the Departments of Diagnostic and Interventional Radiology (D.T., S.S., H.S., C.K.) and Institute of Imaging and Computer Vision (C.H., D.M.), RWTH Aachen University, Aachen, Pauwelsstr 30, 52074 Aachen, Germany.
  • Hannah Schneider
    From the Departments of Diagnostic and Interventional Radiology (D.T., S.S., H.S., C.K.) and Institute of Imaging and Computer Vision (C.H., D.M.), RWTH Aachen University, Aachen, Pauwelsstr 30, 52074 Aachen, Germany.
  • Dorit Merhof
    Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany (J.S., D.B.A., S.N.); Institute of Computer Vision and Imaging, RWTH University Aachen, Pauwelsstrasse 30, 52072 Aachen, Germany (J.S., D.M.); Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (D.T., M.P., F.M., C.K., S.N.); and Faculty of Mathematics and Natural Sciences, Institute of Informatics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (S.C.).
  • Christiane Kuhl
    Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany (J.S., D.B.A., S.N.); Institute of Computer Vision and Imaging, RWTH University Aachen, Pauwelsstrasse 30, 52072 Aachen, Germany (J.S., D.M.); Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (D.T., M.P., F.M., C.K., S.N.); and Faculty of Mathematics and Natural Sciences, Institute of Informatics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (S.C.).