Predicting tumor cell line response to drug pairs with deep learning.

Journal: BMC bioinformatics
Published Date:

Abstract

BACKGROUND: The National Cancer Institute drug pair screening effort against 60 well-characterized human tumor cell lines (NCI-60) presents an unprecedented resource for modeling combinational drug activity.

Authors

  • Fangfang Xia
    Computing, Environment, and Life Sciences Directorate, Argonne National Laboratory, Argonne, Illinois, USA.
  • Maulik Shukla
    Computing, Environment, and Life Sciences Directorate, Argonne National Laboratory, Argonne, Illinois, USA.
  • Thomas Brettin
    Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, USA.
  • Cristina Garcia-Cardona
    Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Judith Cohn
    Computer Science, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Jonathan E Allen
    Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA, United States.
  • Sergei Maslov
    Biology Department, Brookhaven National Laboratory, Upton, New York, USA.
  • Susan L Holbeck
    Developmental Therapeutics Branch, National Cancer Institute, Frederick, MD, USA.
  • James H Doroshow
    Developmental Therapeutics Branch, National Cancer Institute, Frederick, MD, USA.
  • Yvonne A Evrard
    Developmental Therapeutics Branch, National Cancer Institute, Frederick, MD, USA.
  • Eric A Stahlberg
    Data Science and Information Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
  • Rick L Stevens
    Computer Science Department and Computation Institute, University of Chicago, Chicago, Illinois, USA.