Prediction of matrix metal proteinases-12 inhibitors by machine learning approaches.

Journal: Journal of biomolecular structure & dynamics
Published Date:

Abstract

Matrix metal proteinases-12 (MMP-12) is a hot pharmaceutical target on the treatment of many human diseases. There's a crying need for designing and finding new MMP-12 inhibitors. In this work, four machine learning approaches, support vector machine, k-nearest neighbor, C4.5 decision tree, and random forest, were employed to derive statistical models from datasets with well distributed biological activities and predict a compound whether it is a MMP-12 inhibitor. The prediction accuracies of the models are in the range of 96.15-98.08% for sensitivity, 87.23-100.00% for specificity, 91.92-98.99% for the overall prediction accuracy and 0.8401-0.9800 for Matthews correlation coefficient, all producing satisfactory results. By means of diverse feature selection methods, several sets of critical descriptors with key information of inhibitory properties were selected by different models, accelerating the classification for MMP-12 inhibitors and non-inhibitors. Communicated by Ramaswamy H. Sarma.

Authors

  • Bingke Li
    a Institute of Functional Molecules, College of Chemistry and Life Science , Chengdu Normal University , Chengdu , China.
  • Li Hu
    CAS Key Laboratory of Mental Health, Institute of Psychology (CAS) Beijing, China.
  • Ying Xue
    Beijing Centers for Preventive Medical Research, Beijing 100013, China.
  • Min Yang
    College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
  • Long Huang
    a Institute of Functional Molecules, College of Chemistry and Life Science , Chengdu Normal University , Chengdu , China.
  • Zhentao Zhang
    c Beijing Key Laboratory of Thermal Science and Technology , Beijing , China.
  • Jialei Liu
    c Beijing Key Laboratory of Thermal Science and Technology , Beijing , China.
  • Guowei Deng
    a Institute of Functional Molecules, College of Chemistry and Life Science , Chengdu Normal University , Chengdu , China.