Fully automated detection of retinal disorders by image-based deep learning.
Journal:
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
Published Date:
Jan 4, 2019
Abstract
PURPOSE: With the aging population and the global diabetes epidemic, the prevalence of age-related macular degeneration (AMD) and diabetic macular edema (DME) diseases which are the leading causes of blindness is further increasing. Intravitreal injections with anti-vascular endothelial growth factor (anti-VEGF) medications are the standard of care for their indications. Optical coherence tomography (OCT), as a noninvasive imaging modality, plays a major part in guiding the administration of anti-VEGF therapy by providing detailed cross-sectional scans of the retina pathology. Fully automating OCT image detection can significantly decrease the tedious clinician labor and obtain a faithful pre-diagnosis from the analysis of the structural elements of the retina. Thereby, we explore the use of deep transfer learning method based on the visual geometry group 16 (VGG-16) network for classifying AMD and DME in OCT images accurately and automatically.