Deep Learning Neural Networks Highly Predict Very Early Onset of Pluripotent Stem Cell Differentiation.

Journal: Stem cell reports
Published Date:

Abstract

Deep learning is a significant step forward for developing autonomous tasks. One of its branches, computer vision, allows image recognition with high accuracy thanks to the use of convolutional neural networks (CNNs). Our goal was to train a CNN with transmitted light microscopy images to distinguish pluripotent stem cells from early differentiating cells. We induced differentiation of mouse embryonic stem cells to epiblast-like cells and took images at several time points from the initial stimulus. We found that the networks can be trained to recognize undifferentiated cells from differentiating cells with an accuracy higher than 99%. Successful prediction started just 20 min after the onset of differentiation. Furthermore, CNNs displayed great performance in several similar pluripotent stem cell (PSC) settings, including mesoderm differentiation in human induced PSCs. Accurate cellular morphology recognition in a simple microscopic set up may have a significant impact on how cell assays are performed in the near future.

Authors

  • Ariel Waisman
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina.
  • Alejandro La Greca
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina.
  • Alan M Möbbs
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina.
  • María Agustina Scarafía
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina.
  • Natalia L Santín Velazque
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina.
  • Gabriel Neiman
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina.
  • Lucía N Moro
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
  • Carlos Luzzani
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
  • Gustavo E Sevlever
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina.
  • Alejandra S Guberman
    Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica y Departamento de Fisiología, Biología Molecular y Celular, FCEN, Universidad de Buenos Aires, Argentina, Intendente Guiraldes 2160 (C1428EGA), Buenos Aires, Argentina; IQUIBICEN, UBA/CONICET, Buenos Aires, Argentina.
  • Santiago G Miriuka
    LIAN-CONICET, FLENI, Ruta 9 Km 52.2 (B1625XAF), Belén de Escobar, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. Electronic address: smiriuka@fleni.org.ar.