Human cerebral organoids have become valuable tools in neurodevelopment research, holding promise for investigating neurological diseases and reducing drug development costs. However, clinical translation and large-scale production of brain organoids...
Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell ...
We use three-dimensional culture systems of human pluripotent stem cells for differentiation into pituitary organoids. Three-dimensional culture is inherently characterized by its ability to induce heterogeneous cell populations, making it difficult ...
The rapid growth of single-cell transcriptomic technology has produced an increasing number of datasets for both embryonic development and in vitro pluripotent stem cell-derived models. This avalanche of data surrounding pluripotency and the process ...
Pluripotent stem cells can be differentiated into all three germ-layers including ecto-, endo-, and mesoderm in vitro. However, the early identification and rapid characterization of each germ-layer in response to chemical and physical induction of d...
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtai...
Infection with the SARS-CoV-2 virus has rapidly become a global pandemic for which we were not prepared. Several clinical trials using previously approved drugs and drug combinations are urgently under way to improve the current situation. A vaccine ...
Conversion between cell types, e.g., by induced expression of master transcription factors, holds great promise for cellular therapy. Our ability to manipulate cell identity is constrained by incomplete information on cell identity genes (CIGs) and t...
Deep learning is a significant step forward for developing autonomous tasks. One of its branches, computer vision, allows image recognition with high accuracy thanks to the use of convolutional neural networks (CNNs). Our goal was to train a CNN with...
Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research effort has been focused toward creating new screening platforms that utilize human pluripotent stem cell (hPSC)-deriv...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.