Determinants of In-Hospital Mortality After Percutaneous Coronary Intervention: A Machine Learning Approach.

Journal: Journal of the American Heart Association
Published Date:

Abstract

Background The ability to accurately predict the occurrence of in-hospital death after percutaneous coronary intervention is important for clinical decision-making. We sought to utilize the New York Percutaneous Coronary Intervention Reporting System in order to elucidate the determinants of in-hospital mortality in patients undergoing percutaneous coronary intervention across New York State. Methods and Results We examined 479 804 patients undergoing percutaneous coronary intervention between 2004 and 2012, utilizing traditional and advanced machine learning algorithms to determine the most significant predictors of in-hospital mortality. The entire data were randomly split into a training (80%) and a testing set (20%). Tuned hyperparameters were used to generate a trained model while the performance of the model was independently evaluated on the testing set after plotting a receiver-operator characteristic curve and using the output measure of the area under the curve ( AUC ) and the associated 95% CIs. Mean age was 65.2±11.9 years and 68.5% were women. There were 2549 in-hospital deaths within the patient population. A boosted ensemble algorithm (AdaBoost) had optimal discrimination with AUC of 0.927 (95% CI 0.923-0.929) compared with AUC of 0.913 for XGB oost (95% CI 0.906-0.919, P=0.02), AUC of 0.892 for Random Forest (95% CI 0.889-0.896, P<0.01), and AUC of 0.908 for logistic regression (95% CI 0.907-0.910, P<0.01). The 2 most significant predictors were age and ejection fraction. Conclusions A big data approach that utilizes advanced machine learning algorithms identifies new associations among risk factors and provides high accuracy for the prediction of in-hospital mortality in patients undergoing percutaneous coronary intervention.

Authors

  • Subhi J Al'Aref
    Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, USA.
  • Gurpreet Singh
    Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
  • Alexander R van Rosendael
    Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Kranthi K Kolli
    Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, USA.
  • Xiaoyue Ma
    Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.
  • Gabriel Maliakal
    Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, USA.
  • Mohit Pandey
    Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, USA.
  • Bejamin C Lee
    1 Dalio Institute of Cardiovascular Imaging New York-Presbyterian Hospital New York NY.
  • Jing Wang
    Endoscopy Center, Peking University Cancer Hospital and Institute, Beijing, China.
  • Zhuoran Xu
    1 Dalio Institute of Cardiovascular Imaging New York-Presbyterian Hospital New York NY.
  • Yiye Zhang
    Department of Healthcare Policy and Research, Weill Cornell Medical College/New York Presbyterian, NY, USA.
  • James K Min
    3 Department of Radiology, Weill Cornell Medicine , New York, New York.
  • S Chiu Wong
    3 Division of Cardiology Department of Medicine Weill Cornell Medicine New York NY.
  • Robert M Minutello
    3 Division of Cardiology Department of Medicine Weill Cornell Medicine New York NY.