A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
Journal:
Medical physics
Published Date:
May 1, 2019
Abstract
PURPOSE: Real-time image-guided adaptive radiation therapy (IGART) requires accurate marker segmentation to resolve three-dimensional (3D) motion based on two-dimensional (2D) fluoroscopic images. Most common marker segmentation methods require prior knowledge of marker properties to construct a template. If marker properties are not known, an additional learning period is required to build the template which exposes the patient to an additional imaging dose. This work investigates a deep learning-based fiducial marker classifier for use in real-time IGART that requires no prior patient-specific data or additional learning periods. The proposed tracking system uses convolutional neural network (CNN) models to segment cylindrical and arbitrarily shaped fiducial markers.