Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning.

Journal: Nature biomedical engineering
PMID:

Abstract

Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time analysis of the behaviour of mice housed in groups of up to four over several days and in enriched environments. The method combines computer vision through a depth-sensing infrared camera, machine learning for animal and posture identification, and radio-frequency identification to monitor the quality of mouse tracking. It tracks multiple mice accurately, extracts a list of behavioural traits of both individuals and the groups of mice, and provides a phenotypic profile for each animal. We used the method to study the impact of Shank2 and Shank3 gene mutations-mutations that are associated with autism-on mouse behaviour. Characterization and integration of data from the behavioural profiles of Shank2 and Shank3 mutant female mice revealed their distinctive activity levels and involvement in complex social interactions.

Authors

  • Fabrice de Chaumont
    Institut Pasteur, BioImage Analysis Unit, CNRS UMR 3691, Paris, France. fabrice.de-chaumont@pasteur.fr.
  • Elodie Ey
    Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris-Diderot, Paris, France. elodie.ey@pasteur.fr.
  • Nicolas Torquet
    Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris-Seine, Paris, France.
  • Thibault Lagache
    Institut Pasteur, BioImage Analysis Unit, CNRS UMR 3691, Paris, France.
  • Stéphane Dallongeville
    Institut Pasteur, BioImage Analysis Unit, CNRS UMR 3691, Paris, France.
  • Albane Imbert
    Institut Pasteur, FabLab, Center for Innovation and Technological research, Paris, France.
  • Thierry Legou
    Aix-Marseille Université, CNRS, LPL, UMR 7309, Aix-en-Provence, France.
  • Anne-Marie Le Sourd
    Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris-Diderot, Paris, France.
  • Philippe Faure
    Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris-Seine, Paris, France.
  • Thomas Bourgeron
    Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris-Diderot, Paris, France.
  • Jean-Christophe Olivo-Marin
    Institut Pasteur, BioImage Analysis Unit, CNRS UMR 3691, Paris, France. jean-christophe.olivo-marin@pasteur.fr.