Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network.

Journal: Scientific reports
Published Date:

Abstract

Heart disease is a malignant threat to human health. Electrocardiogram (ECG) tests are used to help diagnose heart disease by recording the heart's activity. However, automated medical-aided diagnosis with computers usually requires a large volume of labeled clinical data without patients' privacy to train the model, which is an empirical problem that still needs to be solved. To address this problem, we propose a generative adversarial network (GAN), which is composed of a bidirectional long short-term memory(LSTM) and convolutional neural network(CNN), referred as BiLSTM-CNN,to generate synthetic ECG data that agree with existing clinical data so that the features of patients with heart disease can be retained. The model includes a generator and a discriminator, where the generator employs the two layers of the BiLSTM networks and the discriminator is based on convolutional neural networks. The 48 ECG records from individuals of the MIT-BIH database were used to train the model. We compared the performance of our model with two other generative models, the recurrent neural network autoencoder(RNN-AE) and the recurrent neural network variational autoencoder (RNN-VAE). The results showed that the loss function of our model converged to zero the fastest. We also evaluated the loss of the discriminator of GANs with different combinations of generator and discriminator. The results indicated that BiLSTM-CNN GAN could generate ECG data with high morphological similarity to real ECG recordings.

Authors

  • Fei Zhu
    Collaborative Innovation Center of Novel Software Technology and Industrialization, People's Republic of China. zhufei@suda.edu.cn.
  • Fei Ye
    School of information science and technology, Southwest Jiaotong University, ChengDu, China.
  • Yuchen Fu
    School of Computer Science and Engineering, Changshu Institute of Technology, Changshu, 215500, China.
  • Quan Liu
    Vanderbilt University, Nashville, TN 37212, USA.
  • Bairong Shen
    Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China.