Bi-Modality Medical Image Synthesis Using Semi-Supervised Sequential Generative Adversarial Networks.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

In this paper, we propose a bi-modality medical image synthesis approach based on sequential generative adversarial network (GAN) and semi-supervised learning. Our approach consists of two generative modules that synthesize images of the two modalities in a sequential order. A method for measuring the synthesis complexity is proposed to automatically determine the synthesis order in our sequential GAN. Images of the modality with a lower complexity are synthesized first, and the counterparts with a higher complexity are generated later. Our sequential GAN is trained end-to-end in a semi-supervised manner. In supervised training, the joint distribution of bi-modality images are learned from real paired images of the two modalities by explicitly minimizing the reconstruction losses between the real and synthetic images. To avoid overfitting limited training images, in unsupervised training, the marginal distribution of each modality is learned based on unpaired images by minimizing the Wasserstein distance between the distributions of real and fake images. We comprehensively evaluate the proposed model using two synthesis tasks based on three types of evaluate metrics and user studies. Visual and quantitative results demonstrate the superiority of our method to the state-of-the-art methods, and reasonable visual quality and clinical significance. Code is made publicly available at https://github.com/hust- linyi/Multimodal-Medical-Image-Synthesis.

Authors

  • Xin Yang
    Department of Oral Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
  • Yi Lin
    Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
  • Zhiwei Wang
    Department of Economics and Management, Nanjing Agricultural University, Nanjing, China.
  • Xin Li
    Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China.
  • Kwang-Ting Cheng