Estimating the daily pollen concentration in the atmosphere using machine learning and NEXRAD weather radar data.

Journal: Environmental monitoring and assessment
PMID:

Abstract

Millions of people have an allergic reaction to pollen. The impact of pollen allergies is on the rise due to increased pollen levels caused by global warming and the spread of highly invasive weeds. The production, release, and dispersal of pollen depend on the ambient weather conditions. The temperature, rainfall, humidity, cloud cover, and wind are known to affect the amount of pollen in the atmosphere. In the past, various regression techniques have been applied to estimate and forecast the daily pollen concentration in the atmosphere based on the weather conditions. In this research, machine learning methods were applied to the Next Generation Weather Radar (NEXRAD) data to estimate the daily Ambrosia pollen over a 300 km × 300 km region centered on a NEXRAD weather radar. The Neural Network and Random Forest machine learning methods have been employed to develop separate models to estimate Ambrosia pollen over the region. A feasible way of estimating the daily pollen concentration using only the NEXRAD radar data and machine learning methods would lay the foundation to forecast daily pollen at a fine spatial resolution nationally.

Authors

  • Gebreab K Zewdie
    William B. Hanson Center for Space Sciences, The University of Texas at Dallas, Richardson, TX, USA. gebreab.zewdie@utdallas.edu.
  • David J Lary
    William B. Hanson Center for Space Sciences, The University of Texas at Dallas, Richardson, TX, USA.
  • Xun Liu
    Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China. naturestyle@163.com.
  • Daji Wu
    William B. Hanson Center for Space Sciences, The University of Texas at Dallas, Richardson, TX, USA.
  • Estelle Levetin
    The University of Tulsa, Tulsa, OK, 74104, USA.