AIMC Topic: Weather

Clear Filters Showing 1 to 10 of 120 articles

Spatiotemporal patterns and climate-induced macroeconomic burden of malaria in sub-Saharan Africa.

BMC public health
BACKGROUND: The global malaria burden is characterized by economic, geographical, and climatic disparities, especially in sub-Saharan Africa (SSA). Moreover, meteorological factors have become increasingly important to understand the malaria burden i...

Investigating the influence of socioeconomic factors on the relationships between road characteristics and traffic crash frequency and severity-- A hybrid structural equation modelling - artificial neural networks approach.

Accident; analysis and prevention
Traffic crashes result from complex interactions between driver, roadway, and environmental factors, which traditional methods often fail to capture. This paper investigates the influence of road, weather, and socioeconomic factors on traffic crashes...

Machine learning-based quantification and separation of emissions and meteorological effects on PM in Greater Bangkok.

Scientific reports
This study presents the first-ever application of machine learning (ML)-based meteorological normalization and Shapley additive explanations (SHAP) analysis to quantify, separate, and understand the effect of meteorology on PM over Greater Bangkok (G...

Extreme Weather, Vulnerable Populations, and Mental Health: The Timely Role of AI Interventions.

International journal of environmental research and public health
Environmental disasters are becoming increasingly frequent and severe, disproportionately impacting vulnerable populations who face compounded risks due to intersectional factors such as gender, socioeconomic status, rural residence, and cultural ide...

Explainable machine learning for predictive modeling of blowing snow detection and meteorological feature assessment using XGBoost-SHAP.

PloS one
Accurate forecasting of blowing snow events is vital for improving numerical models of snow processes, yet traditional predictive methods often lack interpretability. This study leverages eXtreme Gradient Boosting (XGBoost) to detect blowing snow eve...

Forewarning the seasonal dynamics of corn leafhopper and mollicutes through neural networks.

International journal of biometeorology
The corn leafhopper (CL), Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae), has become the most important corn pest in Brazil and other corn-producing countries. This highly efficient insect vector transmits corn stunting pathogens result...

Extreme heat prediction through deep learning and explainable AI.

PloS one
Extreme heat waves are causing widespread concern for comprehensive studies on their ecological and societal implications. With the ongoing rise in global temperatures, precise forecasting of heatwaves becomes increasingly crucial for proactive plann...

Forecasting invasive mosquito abundance in the Basque Country, Spain using machine learning techniques.

Parasites & vectors
BACKGROUND: Mosquito-borne diseases cause millions of deaths each year and are increasingly spreading from tropical and subtropical regions into temperate zones, posing significant public health risks. In the Basque Country region of Spain, changing ...

Physics-informed neural networks for enhanced reference evapotranspiration estimation in Morocco: Balancing semi-physical models and deep learning.

Chemosphere
Reference evapotranspiration (ETo) is essential for agricultural water management, crop productivity, and irrigation systems. The Penman-Monteith (PM) equation is the standard method for estimating ETo, but its data-intensive nature makes it impracti...

Enhancing PM2.5 prediction by mitigating annual data drift using wrapped loss and neural networks.

PloS one
In many deep learning tasks, it is assumed that the data used in the training process is sampled from the same distribution. However, this may not be accurate for data collected from different contexts or during different periods. For instance, the t...