Boundary-aware Semi-supervised Deep Learning for Breast Ultrasound Computer-Aided Diagnosis.

Journal: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:

Abstract

Breast ultrasound (US) is an effective imaging modality for breast cancer diagnosis. US computer-aided diagnosis (CAD) systems have been developed for decades and have employed either conventional handcrafted features or modern automatic deep-learned features, the former relying on clinical experience and the latter demanding large datasets. In this paper, we developed a novel BASDL method that integrates clinical-approved breast lesion boundary characteristics (features) into a semi-supervised deep learning (SDL) to achieve accurate diagnosis with a small training dataset. Original breast US images are converted to boundary-oriented feature maps (BFMs) using a distance-transformation coupled with a Gaussian filter. Then, the converted BFMs are used as the input of SDL network, which is characterized as lesion classification guided unsupervised image reconstruction based on stacked convolutional auto-encode (SCAE). We compared the performance of BASDL with conventional SCAE method and SDL method that used the original images as inputs, as well as SCAE method that used BFMs as inputs. Experimental results on two breast US datasets show that BASDL ranked the best among the four networks, with classification accuracy around 92.00±2.38%, which indicated that BASDL could be promising for effective breast US lesion CAD using small datasets.

Authors

  • Erlei Zhang
  • Stephen Seiler
    Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway.
  • Mingli Chen
    Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
  • Weiguo Lu
    Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
  • Xuejun Gu
    Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.