Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports.
Journal:
IEEE journal of biomedical and health informatics
Published Date:
Aug 2, 2019
Abstract
Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDI-related adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential high-priority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating high- and low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts.