Physics-driven learning of x-ray skin dose distribution in interventional procedures.
Journal:
Medical physics
Published Date:
Sep 6, 2019
Abstract
PURPOSE: Radiation doses accumulated during very complicated image-guided x-ray procedures have the potential to cause stochastic, but also deterministic effects, such as skin rashes or even hair loss. To monitor and reduce radiation-related risks to patients' skin, x-ray imaging devices are equipped with online air kerma monitoring components. Traditionally, such measurements have been used to estimate skin entrance dose by (a) estimating air kerma at the interventional reference point (IRP), (b) forward projecting the dose distribution, and (c) considering a backscatter factor among other correction factors. Unfortunately, the complicated interaction between incident x-ray photons, secondary electrons, and skin tissue cannot be properly accounted for by assuming a linear relationship between forward projected air kerma and a backscatter factor. Gold standard skin dose models are therefore determined using Monte Carlo (MC) techniques. However, MC simulations are computationally complex in general and possible acceleration mainly depends on the employed hardware and variance reduction techniques. To obtain reliable and fast dose estimates, we propose to combine MC-based simulations with learning-based methods.