Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning.

Journal: Nature biomedical engineering
Published Date:

Abstract

Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.

Authors

  • Liyue Shen
    Department of Radiation Oncology, Stanford University, Stanford, California.
  • Wei Zhao
    Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China. lxy@jiangnan.edu.cn zhuye@jiangnan.edu.cn.
  • Lei Xing
    Department of Radiation Oncology, Stanford University, CA, USA.