Rethinking arithmetic for deep neural networks.

Journal: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
PMID:

Abstract

We consider efficiency in the implementation of deep neural networks. Hardware accelerators are gaining interest as machine learning becomes one of the drivers of high-performance computing. In these accelerators, the directed graph describing a neural network can be implemented as a directed graph describing a Boolean circuit. We make this observation precise, leading naturally to an understanding of practical neural networks as discrete functions, and show that the so-called are functionally complete. In general, our results suggest that it is valuable to consider , leading to the question of which circuit topologies are promising. We argue that continuity is central to generalization in learning, explore the interaction between data coding, network topology, and node functionality for continuity and pose some open questions for future research. As a first step to bridging the gap between continuous and Boolean views of neural network accelerators, we present some recent results from our work on LUTNet, a novel Field-Programmable Gate Array inference approach. Finally, we conclude with additional possible fruitful avenues for research bridging the continuous and discrete views of neural networks. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'.

Authors

  • G A Constantinides
    EEE Department, Imperial College London, London, UK.