Differentiation of Small (≤ 4 cm) Renal Masses on Multiphase Contrast-Enhanced CT by Deep Learning.

Journal: AJR. American journal of roentgenology
Published Date:

Abstract

This study evaluated the utility of a deep learning method for determining whether a small (≤ 4 cm) solid renal mass was benign or malignant on multiphase contrast-enhanced CT. This retrospective study included 1807 image sets from 168 pathologically diagnosed small (≤ 4 cm) solid renal masses with four CT phases (unenhanced, corticomedullary, nephrogenic, and excretory) in 159 patients between 2012 and 2016. Masses were classified as malignant ( = 136) or benign ( = 32). The dataset was randomly divided into five subsets: four were used for augmentation and supervised training (48,832 images), and one was used for testing (281 images). The Inception-v3 architecture convolutional neural network (CNN) model was used. The AUC for malignancy and accuracy at optimal cutoff values of output data were evaluated in six different CNN models. Multivariate logistic regression analysis was also performed. Malignant and benign lesions showed no significant difference of size. The AUC value of corticomedullary phase was higher than that of other phases (corticomedullary vs excretory, = 0.022). The highest accuracy (88%) was achieved in corticomedullary phase images. Multivariate analysis revealed that the CNN model of corticomedullary phase was a significant predictor for malignancy compared with other CNN models, age, sex, and lesion size. A deep learning method with a CNN allowed acceptable differentiation of small (≤ 4 cm) solid renal masses in dynamic CT images, especially in the corticomedullary image model.

Authors

  • Takashi Tanaka
    Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho kita-ku, Okayama, 700-8558, Japan.
  • Yong Huang
    State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Normal University, Guilin 541004, China.
  • Yohei Marukawa
    Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho kita-ku, Okayama, 700-8558, Japan.
  • Yuka Tsuboi
    Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho kita-ku, Okayama, 700-8558, Japan.
  • Yoshihisa Masaoka
    Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho kita-ku, Okayama, 700-8558, Japan.
  • Katsuhide Kojima
    Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho kita-ku, Okayama, 700-8558, Japan.
  • Toshihiro Iguchi
    Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho kita-ku, Okayama, 700-8558, Japan.
  • Takao Hiraki
    Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.takaoh@tc4.so-net.ne.jp.
  • Hideo Gobara
    Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho kita-ku, Okayama, 700-8558, Japan.
  • Hiroyuki Yanai
    Department of Pathology, Okayama University Hospital, Okayama, Japan.
  • Yasutomo Nasu
  • Susumu Kanazawa