AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Diagnosis, Differential

Showing 1 to 10 of 691 articles

Clear Filters

Development and validation of a CT-based radiomics machine learning model for differentiating immune-related interstitial pneumonia.

International immunopharmacology
INTRODUCTION: Immune checkpoint inhibitor-related interstitial pneumonia (CIP) poses a diagnostic challenge due to its radiographic similarity to other pneumonias. We developed a non-invasive model using CT imaging to differentiate CIP from other pne...

[Machine learning models established to distinguish OA and RA based on immune factors in the knee joint fluid].

Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology
Objective Based on 25 indicators including immune factors, cell count classification, and smear results of the knee joint fluid, machine learning models were established to distinguish between osteoarthritis (OA) and rheumatoid arthritis (RA). Method...

Development of a machine learning-based diagnostic model using hematological parameters to differentiate periductal mastitis from granulomatous lobular mastitis.

Science progress
ObjectiveNonpuerperal mastitis (NPM) is an inflammatory condition, including periductal mastitis (PDM) and granulomatous lobular mastitis (GLM). The clinical manifestations of PDM and GLM are highly similar, posing significant challenges in their dif...

Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG.

Translational psychiatry
Schizophrenia (SZ) and bipolar disorder (BD) pose diagnostic challenges due to overlapping clinical symptoms and genetic factors, often resulting in misdiagnosis and suboptimal treatment outcomes. This study aimed to identify EEG-based biomarkers tha...

An artificial intelligence model utilizing endoscopic ultrasonography for differentiating small and micro gastric stromal tumors from gastric leiomyomas.

BMC gastroenterology
BACKGROUND: Gastric stromal tumors (GSTs) and gastric leiomyomas (GLs) represent the primary subtypes of gastric submucosal tumors (SMTs) characterized by distinct biological characteristics and treatment modalities. The accurate differentiation betw...

Machine learning model for differentiating malignant from benign thyroid nodules based on the thyroid function data.

BMJ open
OBJECTIVES: To develop and validate a machine learning (ML) model to differentiate malignant from benign thyroid nodules (TNs) based on the routine data and provide diagnostic assistance for medical professionals.

Machine Learning Analysis of Single-Voxel Proton MR Spectroscopy for Differentiating Solitary Fibrous Tumors and Meningiomas.

NMR in biomedicine
Solitary fibrous tumor (SFT), formerly known as hemangiopericytoma, is an uncommon brain tumor often confused with meningioma on MRI. Unlike meningiomas, SFTs exhibit a myoinositol peak on magnetic resonance spectroscopy (MRS). This study aimed to de...

Machine learning approach for differentiating iron deficiency anemia and thalassemia using random forest and gradient boosting algorithms.

Scientific reports
Formulas based on red blood cell indices have been used to differentiate between iron deficiency anemia (IDA) and thalassemia (Thal). However, they exhibit varying efficiencies. In this study, we aimed to develop a tool for discriminating between IDA...