Machine Learning and Deep Neural Networks Applications in Coronary Flow Assessment: The Case of Computed Tomography Fractional Flow Reserve.

Journal: Journal of thoracic imaging
Published Date:

Abstract

Coronary computed tomography angiography (cCTA) is a reliable and clinically proven method for the evaluation of coronary artery disease. cCTA data sets can be used to derive fractional flow reserve (FFR) as CT-FFR. This method has respectable results when compared in previous trials to invasive FFR, with the aim of detecting lesion-specific ischemia. Results from previous studies have shown many benefits, including improved therapeutic guidance to efficiently justify the management of patients with suspected coronary artery disease and enhanced outcomes and reduced health care costs. More recently, a technical approach to the calculation of CT-FFR using an artificial intelligence deep machine learning (ML) algorithm has been introduced. ML algorithms provide information in a more objective, reproducible, and rational manner and with improved diagnostic accuracy in comparison to cCTA. This review gives an overview of the technical background, clinical validation, and implementation of ML applications in CT-FFR.

Authors

  • Christian Tesche
    Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr, Charleston, SC 29425-2260 (S.S.M., D.M., M.v.A., C.N.D.C., R.R.B., C.T., A.V.S., A.M.F., B.E.J., L.P.G., U.J.S.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (S.S.M., T.J.V.); Stanford University School of Medicine, Department of Radiology, Stanford, Calif (D.M.); Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (C.N.D.C.); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (R.R.B.); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany (C.T.); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany (C.T.); Siemens Medical Solutions USA, Malvern, Pa (P.S.); and Department of Emergency Medicine, Medical University of South Carolina, Charleston, SC (A.J.M.).
  • Hunter N Gray
    Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC.