Development of robust artificial neural networks for prediction of 5-year survival in bladder cancer.
Journal:
Urologic oncology
Published Date:
Jun 24, 2020
Abstract
PURPOSE: When exploring survival outcomes for patients with bladder cancer, most studies rely on conventional statistical methods such as proportional hazards models. Given the successful application of machine learning to handle big data in many disciplines outside of medicine, we sought to determine if machine learning could be used to improve our ability to predict survival in bladder cancer patients. We compare the performance of artificial neural networks (ANN), a type of machine learning algorithm, with that of multivariable Cox proportional hazards (CPH) models in the prediction of 5-year disease-specific survival (DSS) and overall survival (OS) in patients with bladder cancer.