Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules.

Journal: American journal of respiratory and critical care medicine
Published Date:

Abstract

The management of indeterminate pulmonary nodules (IPNs) remains challenging, resulting in invasive procedures and delays in diagnosis and treatment. Strategies to decrease the rate of unnecessary invasive procedures and optimize surveillance regimens are needed. To develop and validate a deep learning method to improve the management of IPNs. A Lung Cancer Prediction Convolutional Neural Network model was trained using computed tomography images of IPNs from the National Lung Screening Trial, internally validated, and externally tested on cohorts from two academic institutions. The areas under the receiver operating characteristic curve in the external validation cohorts were 83.5% (95% confidence interval [CI], 75.4-90.7%) and 91.9% (95% CI, 88.7-94.7%), compared with 78.1% (95% CI, 68.7-86.4%) and 81.9 (95% CI, 76.1-87.1%), respectively, for a commonly used clinical risk model for incidental nodules. Using 5% and 65% malignancy thresholds defining low- and high-risk categories, the overall net reclassifications in the validation cohorts for cancers and benign nodules compared with the Mayo model were 0.34 (Vanderbilt) and 0.30 (Oxford) as a rule-in test, and 0.33 (Vanderbilt) and 0.58 (Oxford) as a rule-out test. Compared with traditional risk prediction models, the Lung Cancer Prediction Convolutional Neural Network was associated with improved accuracy in predicting the likelihood of disease at each threshold of management and in our external validation cohorts. This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low- or high-risk categories in more than a third of cancers and benign nodules when compared with conventional risk models, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.

Authors

  • Pierre P Massion
    Medicine, Vanderbilt University School of Medicine, Nashville, TN 37235, USA.
  • Sanja Antic
    Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Division of Allergy, Pulmonary and Critical Care Medicine.
  • Sarim Ather
    Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
  • Carlos Arteta
  • Jan Brabec
    Faculty of Medicine, Masaryk University, Brno, Czech Republic.
  • Heidi Chen
    Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN.
  • Jérôme Declerck
    Siemens Molecular Imaging, Oxford, UK.
  • David Dufek
    Faculty of Medicine, Masaryk University, Brno, Czech Republic.
  • William Hickes
    Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
  • Timor Kadir
    Mirada Medical, Oxford, UK.
  • Jonas Kunst
    Faculty of Medicine, Masaryk University, Brno, Czech Republic.
  • Bennett A Landman
    Vanderbilt University, Nashville TN 37235, USA.
  • Reginald F Munden
    Department of Radiology, Wake Forest Baptist Health, Winston Salem, North Carolina.
  • Petr Novotny
    Respiratory Medicine, Glenfield General Hospital, Leicester, UK.
  • Heiko Peschl
    Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
  • Lyndsey C Pickup
    Optellum Ltd., Oxford, United Kingdom.
  • Catarina Santos
    Optellum Ltd., Oxford, United Kingdom.
  • Gary T Smith
    Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee.
  • Ambika Talwar
    Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
  • Fergus Gleeson
    Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.