Estimating Local Cellular Density in Glioma Using MR Imaging Data.

Journal: AJNR. American journal of neuroradiology
Published Date:

Abstract

BACKGROUND AND PURPOSE: Increased cellular density is a hallmark of gliomas, both in the bulk of the tumor and in areas of tumor infiltration into surrounding brain. Altered cellular density causes altered imaging findings, but the degree to which cellular density can be quantitatively estimated from imaging is unknown. The purpose of this study was to discover the best MR imaging and processing techniques to make quantitative and spatially specific estimates of cellular density.

Authors

  • E D H Gates
    From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas.
  • J S Weinberg
    From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas.
  • S S Prabhu
    From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas.
  • J S Lin
    From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas.
  • J Hamilton
    Radiology Partners (J.H.), Houston, Texas.
  • J D Hazle
    Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  • G N Fuller
    From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas.
  • V Baladandayuthapani
    Department of Computational Medicine and Bioinformatics (V.B.), University of Michigan School of Public Health, Ann Arbor, Michigan.
  • D T Fuentes
    From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas.
  • D Schellingerhout
    From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas Dawid.Schellingerhout@mdanderson.org.