Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification.

Journal: Nature communications
Published Date:

Abstract

Rapid and accurate clinical diagnosis remains challenging. A component of diagnosis tool development is the design of effective classification models with Mass spectrometry (MS) data. Some Machine Learning approaches have been investigated but these models require time-consuming preprocessing steps to remove artifacts, making them unsuitable for rapid analysis. Convolutional Neural Networks (CNNs) have been found to perform well under such circumstances since they can learn representations from raw data. However, their effectiveness decreases when the number of available training samples is small, which is a common situation in medicine. In this work, we investigate transfer learning on 1D-CNNs, then we develop a cumulative learning method when transfer learning is not powerful enough. We propose to train the same model through several classification tasks over various small datasets to accumulate knowledge in the resulting representation. By using rat brain as the initial training dataset, a cumulative learning approach can have a classification accuracy exceeding 98% for 1D clinical MS-data. We show the use of cumulative learning using datasets generated in different biological contexts, on different organisms, and acquired by different instruments. Here we show a promising strategy for improving MS data classification accuracy when only small numbers of samples are available.

Authors

  • Khawla Seddiki
    Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada., Québec City, QC, Canada.
  • Philippe Saudemont
    Université de Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, F-59000, France.
  • Frédéric Precioso
    Université Côte d'Azur, CNRS, INRIA, I3S, Sophia Antipolis, France.
  • Nina Ogrinc
    Université de Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, F-59000, France.
  • Maxence Wisztorski
    Université de Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, F-59000, France.
  • Michel Salzet
    Université de Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, F-59000, France.
  • Isabelle Fournier
    Université de Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, F-59000, France. isabelle.fournier@univ-lille.fr.
  • Arnaud Droit
    Proteomics platform, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada; Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada; Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada. Electronic address: arnaud.droit@crchuq.ulaval.ca.