Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection.

Journal: Scientific reports
Published Date:

Abstract

Recent advancements in deep learning have led to a resurgence of medical imaging and Electronic Medical Record (EMR) models for a variety of applications, including clinical decision support, automated workflow triage, clinical prediction and more. However, very few models have been developed to integrate both clinical and imaging data, despite that in routine practice clinicians rely on EMR to provide context in medical imaging interpretation. In this study, we developed and compared different multimodal fusion model architectures that are capable of utilizing both pixel data from volumetric Computed Tomography Pulmonary Angiography scans and clinical patient data from the EMR to automatically classify Pulmonary Embolism (PE) cases. The best performing multimodality model is a late fusion model that achieves an AUROC of 0.947 [95% CI: 0.946-0.948] on the entire held-out test set, outperforming imaging-only and EMR-only single modality models.

Authors

  • Shih-Cheng Huang
    Stanford University, Stanford, CA, USA.
  • Anuj Pareek
    Stanford University, Center for Artificial Intelligence in Medicine & Imaging, Stanford, CA, 94304, US.
  • Roham Zamanian
    Department of Medicine, Med/Pulmonary, and Critical Care Medicine, Stanford University, Stanford, California.
  • Imon Banerjee
    Mayo Clinic, Department of Radiology, Scottsdale, AZ, USA.
  • Matthew P Lungren