A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.

Journal: PloS one
Published Date:

Abstract

INTRODUCTION: Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.

Authors

  • Ilaria Amodeo
    NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Giorgio De Nunzio
    Laboratory of Biomedical Physics and Environment, Department of Mathematics and Physics "E. De Giorgi", Università del Salento, Lecce, Italy.
  • Genny Raffaeli
    NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Irene Borzani
    Pediatric Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Alice Griggio
    Monza and Brianza Mother and Child Foundation, San Gerardo Hospital, Università degli Studi di Milano-Bicocca, Monza, Italy.
  • Luana Conte
    Department of Mathematics and Physics "E. De Giorgi", Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy.
  • Francesco Macchini
    Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Valentina Condò
    NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Nicola Persico
    Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
  • Isabella Fabietti
    Department of Obstetrics and Gynecology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
  • Stefano Ghirardello
    NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Maria Pierro
    NICU, Bufalini Hospital, Azienda Unità Sanitaria Locale della Romagna, Cesena, Italy.
  • Benedetta Tafuri
  • Giuseppe Como
    NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Donato Cascio
    Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy.
  • Mariarosa Colnaghi
    NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Fabio Mosca
    NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Giacomo Cavallaro
    NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.