Deep Neural Networks for Epistatic Sequence Analysis.

Journal: Methods in molecular biology (Clifton, N.J.)
PMID:

Abstract

We report a step-by-step protocol to use pysster, a TensorFlow-based package for building deep neural networks on a broad range of epistatic sequences such as DNA, RNA, or annotated secondary structure sequences. Pysster provides users comprehensive supports for developing, training, and evaluating the self-defined deep neural networks on sequence data. Moreover, pysster allows users to easily visualize the resulting perditions, which is helpful to uncover the "black box" of deep neural networks. Here, we describe a step-by-step application of pysster to classify the RNA A-to-I editing regions and interpret the model predictions. To further demonstrate the generalizability of pysster, we utilized it to build and evaluated a new deep neural network on an artificial epistatic sequence dataset.

Authors

  • Jiecong Lin
    Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.