AIMC Topic: Models, Genetic

Clear Filters Showing 1 to 10 of 345 articles

Multi-task genomic prediction using gated residual variable selection neural networks.

BMC bioinformatics
BACKGROUND: The recent development of high-throughput sequencing techniques provide massive data that can be used in genome-wide prediction (GWP). Although GWP is effective on its own, the incorporation of traditional polygenic pedigree information i...

Breeding perspectives on tackling trait genome-to-phenome (G2P) dimensionality using ensemble-based genomic prediction.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Trait Genome-to-Phenome (G2P) dimensionality and "breeding context" combine to influence the realised prediction skill of different whole genome prediction (WGP) methods. Theory and empirical evidence both suggest there is likely to be "No Free Lunch...

Generative prediction of causal gene sets responsible for complex traits.

Proceedings of the National Academy of Sciences of the United States of America
The relationship between genotype and phenotype remains an outstanding question for organism-level traits because these traits are generally . The challenge arises from complex traits being determined by a combination of multiple genes (or loci), whi...

Toward a general framework for AI-enabled prediction in crop improvement.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
A theoretical framework for AI and ensembled prediction for crop improvement is introduced and demonstrated using the logistic map. Symbolic/sub-symbolic AI-based prediction can increase predictive skill with increase in system complexity. The curse ...

Generative AI for predictive breeding: hopes and caveats.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Among the broad area of artificial intelligence (AI), generative AI algorithms have emerged as a revolutionary technology able to produce highly realistic 'synthetic' data, akin to standard simulation but with fewer contraints. The main focus of gene...

Assessing simulation-based supervised machine learning for demographic parameter inference from genomic data.

Heredity
The ever-increasing availability of high-throughput DNA sequences and the development of numerous computational methods have led to considerable advances in our understanding of the evolutionary and demographic history of populations. Several demogra...

Performance of deep-learning-based approaches to improve polygenic scores.

Nature communications
Polygenic scores, which estimate an individual's genetic propensity for a disease or trait, have the potential to become part of genomic healthcare. Neural-network based deep-learning has emerged as a method of intense interest to model complex, nonl...

Statistical algorithms for the analysis of deleterious genetic mutations.

Bio Systems
We present algorithms for model selection and parameter estimation concerning deleterious genetic mutations. Three models are considered: single gene mutation, double cross-effect mutations or no genetic cause. Each of these models include unknown pa...

Sweet pepper yield modeling via deep learning and selection of superior genotypes using GBLUP and MGIDI.

Scientific reports
Intelligent knowledge about Capsicum annuum L. germplasm could lead to effective management of germplasm. Here, 29 accessions of sweet pepper were investigated in two separate randomized complete block design with three replications in the field cond...

EBMGP: a deep learning model for genomic prediction based on Elastic Net feature selection and bidirectional encoder representations from transformer's embedding and multi-head attention pooling.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Enhancing early selection through genomic estimated breeding values is pivotal for reducing generation intervals and accelerating breeding programs. Recently, deep learning (DL) approaches have gained prominence in genomic prediction (GP). Here, we i...