DS-GCNs: Connectome Classification using Dynamic Spectral Graph Convolution Networks with Assistant Task Training.

Journal: Cerebral cortex (New York, N.Y. : 1991)
Published Date:

Abstract

Functional connectivity (FC) matrices measure the regional interactions in the brain and have been widely used in neurological brain disease classification. A brain network, also named as connectome, could form a graph structure naturally, the nodes of which are brain regions and the edges are interregional connectivity. Thus, in this study, we proposed novel graph convolutional networks (GCNs) to extract efficient disease-related features from FC matrices. Considering the time-dependent nature of brain activity, we computed dynamic FC matrices with sliding windows and implemented a graph convolution-based LSTM (long short-term memory) layer to process dynamic graphs. Moreover, the demographics of patients were also used as additional outputs to guide the classification. In this paper, we proposed to utilize the demographic information as extra outputs and to share parameters among three networks predicting subject status, gender, and age, which serve as assistant tasks. We tested the performance of the proposed architecture in ADNI II dataset to classify Alzheimer's disease patients from normal controls. The classification accuracy, sensitivity, and specificity reach 90.0%, 91.7%, and 88.6%, respectively, on ADNI II dataset.

Authors

  • Xiaodan Xing
    Shanghai United Imaging Intelligence Co., Ltd., Shanghai, 201807, China.
  • Qingfeng Li
    Shanghai United Imaging Intelligence Co., Ltd., Shanghai, 201807, China.
  • Mengya Yuan
    School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China.
  • Hao Wei
    School of Computer Science and Engineering, Central South University, Hunan, 410083, China.
  • Zhong Xue
    Shanghai United Imaging Intelligence Co Ltd., Shanghai, China.
  • Tao Wang
    Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Feng Shi
    Department of Research and Development, Shanghai United Imaging Intelligence, Co., Ltd. Shanghai, China.
  • Dinggang Shen
    School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.