A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images.

Journal: Scientific reports
Published Date:

Abstract

The differentiation between major histological types of lung cancer, such as adenocarcinoma (ADC), squamous cell carcinoma (SCC), and small-cell lung cancer (SCLC) is of crucial importance for determining optimum cancer treatment. Hematoxylin and Eosin (H&E)-stained slides of small transbronchial lung biopsy (TBLB) are one of the primary sources for making a diagnosis; however, a subset of cases present a challenge for pathologists to diagnose from H&E-stained slides alone, and these either require further immunohistochemistry or are deferred to surgical resection for definitive diagnosis. We trained a deep learning model to classify H&E-stained Whole Slide Images of TBLB specimens into ADC, SCC, SCLC, and non-neoplastic using a training set of 579 WSIs. The trained model was capable of classifying an independent test set of 83 challenging indeterminate cases with a receiver operator curve area under the curve (AUC) of 0.99. We further evaluated the model on four independent test sets-one TBLB and three surgical, with combined total of 2407 WSIs-demonstrating highly promising results with AUCs ranging from 0.94 to 0.99.

Authors

  • Fahdi Kanavati
    Medmain Research, Medmain Inc., Fukuoka, 810-0042, Japan.
  • Gouji Toyokawa
    Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, 810-8563, Japan.
  • Seiya Momosaki
    Department of Pathology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, 810-8563, Japan.
  • Hiroaki Takeoka
    Department of Respiratory Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, 810-8563, Japan.
  • Masaki Okamoto
    Department of Respiratory Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, 810-8563, Japan.
  • Koji Yamazaki
    Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, 810-8563, Japan.
  • Sadanori Takeo
    Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, 810-8563, Japan.
  • Osamu Iizuka
    Medmain Inc., Fukuoka, 810-0042, Japan.
  • Masayuki Tsuneki
    Medmain Research, Medmain Inc., Fukuoka, 810-0042, Japan. tsuneki@medmain.com.