A cell-to-patient machine learning transfer approach uncovers novel basal-like breast cancer prognostic markers amongst alternative splice variants.

Journal: BMC biology
Published Date:

Abstract

BACKGROUND: Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression profiles have been successfully used to classify breast tumours into 5 major types with different prognosis and sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice variants to subclassify highly aggressive breast cancers.

Authors

  • Jean-Philippe Villemin
    Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
  • Claudio Lorenzi
    Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
  • Marie-Sarah Cabrillac
    Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
  • Andrew Oldfield
    Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
  • William Ritchie
    Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France. william.ritchie@igh.cnrs.fr.
  • Reini F Luco
    Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France. reini.luco@igh.cnrs.fr.