Whole-brain functional MRI registration based on a semi-supervised deep learning model.
Journal:
Medical physics
PMID:
33583029
Abstract
PURPOSE: Traditional registration of functional magnetic resonance images (fMRI) is typically achieved through registering their coregistered structural MRI. However, it cannot achieve accurate performance in that functional units which are not necessarily located relative to anatomical structures. In addition, registration methods based on functional information focus on gray matter (GM) information but ignore the importance of white matter (WM). To overcome the limitations of exiting techniques, in this paper, we aim to register resting-state fMRI (rs-fMRI) based directly on rs-fMRI data and make full use of GM and WM information to improve the registration performance.