Development and head-to-head comparison of machine-learning models to identify patients requiring prostate biopsy.
Journal:
BMC urology
Published Date:
May 16, 2021
Abstract
BACKGROUND: Machine learning has many attractive theoretic properties, specifically, the ability to handle non predefined relations. Additionally, studies have validated the clinical utility of mpMRI for the detection and localization of CSPCa (Gleason score ≥ 3 + 4). In this study, we sought to develop and compare machine-learning models incorporating mpMRI parameters with traditional logistic regression analysis for prediction of PCa (Gleason score ≥ 3 + 3) and CSPCa on initial biopsy.