Predictive online 3D target tracking with population-based generative networks for image-guided radiotherapy.

Journal: International journal of computer assisted radiology and surgery
PMID:

Abstract

PURPOSE: Respiratory motion of thoracic organs poses a severe challenge for the administration of image-guided radiotherapy treatments. Providing online and up-to-date volumetric information during free breathing can improve target tracking, ultimately increasing treatment efficiency and reducing toxicity to surrounding healthy tissue. In this work, a novel population-based generative network is proposed to address the problem of 3D target location prediction from 2D image-based surrogates during radiotherapy, thus enabling out-of-plane tracking of treatment targets using images acquired in real time.

Authors

  • Liset Vázquez Romaguera
    École Polytechnique de Montréal, Montréal, Canada.
  • Tal Mezheritsky
    École Polytechnique de Montréal, Montréal, Canada.
  • Rihab Mansour
    Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada.
  • William Tanguay
    Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Faculté de médecine, Université de Montréal, Montréal, Canada.
  • Samuel Kadoury
    École Polytechnique de Montréal, Montreal, Canada. samuel.kadoury@polymtl.ca.