Improving the accuracy and convergence of drug permeation simulations via machine-learned collective variables.

Journal: The Journal of chemical physics
PMID:

Abstract

Understanding the permeation of biomolecules through cellular membranes is critical for many biotechnological applications, including targeted drug delivery, pathogen detection, and the development of new antibiotics. To this end, computer simulations are routinely used to probe the underlying mechanisms of membrane permeation. Despite great progress and continued development, permeation simulations of realistic systems (e.g., more complex drug molecules or biologics through heterogeneous membranes) remain extremely challenging if not intractable. In this work, we combine molecular dynamics simulations with transition-tempered metadynamics and techniques from the variational approach to conformational dynamics to study the permeation mechanism of a drug molecule, trimethoprim, through a multicomponent membrane. We show that collective variables (CVs) obtained from an unsupervised machine learning algorithm called time-structure based Independent Component Analysis (tICA) improve performance and substantially accelerate convergence of permeation potential of mean force (PMF) calculations. The addition of cholesterol to the lipid bilayer is shown to increase both the width and height of the free energy barrier due to a condensing effect (lower area per lipid) and increase bilayer thickness. Additionally, the tICA CVs reveal a subtle effect of cholesterol increasing the resistance to permeation in the lipid head group region, which is not observed when canonical CVs are used. We conclude that the use of tICA CVs can enable more efficient PMF calculations with additional insight into the permeation mechanism.

Authors

  • Fikret Aydin
    Quantum Simulation Group, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Aleksander E P Durumeric
    Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
  • Gabriel C A da Hora
    Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA.
  • John D M Nguyen
    Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA.
  • Myong In Oh
    Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA.
  • Jessica M J Swanson
    Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA.