Deep Learning-Guided Fiberoptic Raman Spectroscopy Enables Real-Time Diagnosis and Assessment of Nasopharyngeal Carcinoma and Post-treatment Efficacy during Endoscopy.

Journal: Analytical chemistry
Published Date:

Abstract

In this work, we develop a deep learning-guided fiberoptic Raman diagnostic platform to assess its ability of real-time nasopharyngeal carcinoma (NPC) diagnosis and post-treatment follow-up of NPC patients. The robust Raman diagnostic platform is established using innovative multi-layer Raman-specified convolutional neural networks (RS-CNN) together with simultaneous fingerprint and high-wavenumber spectra acquired within sub-seconds using a fiberoptic Raman endoscopy system. We have acquired a total of 15,354 FP/HW Raman spectra (control: 1761; NPC: 4147; and post-treatment (PT): 9446) from 888 tissue sites of 418 subjects (healthy control: 85; NPC: 82; and PT: 251) during endoscopic examination. The optimized RS-CNN model provides an overall diagnostic accuracy of 82.09% (sensitivity of 92.18% and specificity of 73.99%) for identifying NPC from control and post-treatment patients, which is superior to the best diagnosis performance (accuracy of 73.57%; sensitivity of 89.74%; and specificity of 58.10%) using partial-least-squares linear-discriminate-analysis, proving the robustness and high spectral information sensitiveness of the RS-CNN model developed. We further investigate the saliency map of the best RS-CNN models using the correctly predicted Raman spectra. The specific Raman signatures that are related to the cancer-associated biomolecular variations (e.g., collagens, lipids, and nucleic acids) are uncovered in the map, validating the diagnostic capability of RS-CNN models to correlate with biomolecular signatures. Deep learning-based Raman spectroscopy is a powerful diagnostic tool for rapid screening and surveillance of NPC patients and can also be deployed for longitudinal follow-up monitoring of post-treatment NPC patients to detect early cancer recurrences in the head and neck.

Authors

  • Chi Shu
    Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.
  • Hanshu Yan
    Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore.
  • Wei Zheng
    School of Computer Engineering, Jinling Institute of Technology, Nanjing, 211169, China. zhengwei@jit.edu.cn.
  • Kan Lin
    Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.
  • Anne James
    Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore.
  • Sathiyamoorthy Selvarajan
    Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore.
  • Chwee Ming Lim
    Department of Otolaryngology-Head and Neck Surgery, National University Hospital, Singapore, Singapore.
  • Zhiwei Huang
    Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.