Artificial Intelligence-Enabled Electrocardiography to Screen Patients with Dilated Cardiomyopathy.

Journal: The American journal of cardiology
Published Date:

Abstract

Undiagnosed dilated cardiomyopathy (DC) can be asymptomatic or present as sudden cardiac death, therefore pre-emptively identifying and treating patients may be beneficial. Screening for DC with echocardiography is expensive and labor intensive and standard electrocardiography (ECG) is insensitive and non-specific. The performance and applicability of artificial intelligence-enabled electrocardiography (AI-ECG) for detection of DC is unknown. Diagnostic performance of an AI algorithm in determining reduced left ventricular ejection fraction (LVEF) was evaluated in a cohort that comprised of DC and normal LVEF control patients. DC patients and controls with 12-lead ECGs and a reference LVEF measured by echocardiography performed within 30 and 180 days of the ECG respectively were enrolled. The model was tested for its sensitivity, specificity, negative predictive (NPV) and positive predictive values (PPV) based on the prevalence of DC at 1% and 5%. The cohort consisted of 421 DC cases (60% males, 57±15 years, LVEF 28±11%) and 16,025 controls (49% males, age 69 ±16 years, LVEF 62±5%). For detection of LVEF≤45%, the area under the curve (AUC) was 0.955 with a sensitivity of 98.8% and specificity 44.8%. The NPV and PPV were 100% and 1.8% at a DC prevalence of 1% and 99.9% and 8.6% at a prevalence of 5%, respectively. In conclusion AI-ECG demonstrated high sensitivity and negative predictive value for detection of DC and could be used as a simple and cost-effective screening tool with implications for screening first degree relatives of DC patients.

Authors

  • Sanskriti Shrivastava
    Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.
  • Michal Cohen-Shelly
    Department of Cardiovascular Medicine Mayo Clinic Rochester MN.
  • Zachi I Attia
    Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
  • Andrew N Rosenbaum
    Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.
  • Liwei Wang
    Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
  • John R Giudicessi
    Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Margaret Redfield
    Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.
  • Kent Bailey
    Department of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota.
  • Francisco Lopez-Jimenez
    Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
  • Grace Lin
    Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.
  • Suraj Kapa
    Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
  • Paul A Friedman
    Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
  • Naveen L Pereira
    Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.