BACKGROUND: Systemic embolic events due to exfoliation of intracardiac thrombus (ICT) are one of the catastrophic complications of dilated cardiomyopathy (DCM). This study intended to develop a prediction model to predict the risk of ICT in patients ...
The Drosophila model is pivotal in deciphering the pathophysiological underpinnings of various human ailments, notably aging and cardiovascular diseases. Cutting-edge imaging techniques and physiology yield vast high-resolution videos, demanding adva...
RATIONALE AND OBJECTIVES: This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM...
Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish...
Prediction of major arrhythmic events (MAEs) in dilated cardiomyopathy represents an unmet clinical goal. Computational models and artificial intelligence (AI) are new technological tools that could offer a significant improvement in our ability to p...
Echocardiography is the first-line diagnostic technique for heart diseases. Although artificial intelligence techniques have made great improvements in the analysis of echocardiography, the major limitations remain to be the built neural networks are...
Dilated cardiomyopathy (DCM) is characterized by reduced cardiac output, as well as thinning and enlargement of left ventricular chambers. These characteristics eventually lead to heart failure. Current standards of care do not target the underlying ...
OBJECTIVES: Dilated cardiomyopathy (DCM) is characterized by a specific transcriptome. Since the DCM molecular network is largely unknown, the aim was to identify specific disease-related molecular targets combining an original machine learning (ML) ...
OBJECTIVE: Patients with dilated cardiomyopathy (DCM) and severely reduced left ventricular ejection fractions (LVEFs) are at very high risks of experiencing adverse cardiac events. A machine learning (ML) method could enable more effective risk stra...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.