Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria.

Journal: The New England journal of medicine
PMID:

Abstract

BACKGROUND: Technology to restore the ability to communicate in paralyzed persons who cannot speak has the potential to improve autonomy and quality of life. An approach that decodes words and sentences directly from the cerebral cortical activity of such patients may represent an advancement over existing methods for assisted communication.

Authors

  • David A Moses
    Center for Integrative Neuroscience, UCSF, San Francisco, CA, USA.
  • Sean L Metzger
    From the Department of Neurological Surgery (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., M.E.D., E.F.C.), the Weill Institute for Neuroscience (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., K.G., E.F.C.), and the Departments of Rehabilitation Services (P.M.L.) and Neurology (G.M.A., A.T.-C., K.G.), University of California, San Francisco (UCSF), San Francisco, and the Graduate Program in Bioengineering, University of California, Berkeley-UCSF, Berkeley (S.L.M., J.R.L., E.F.C.).
  • Jessie R Liu
    From the Department of Neurological Surgery (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., M.E.D., E.F.C.), the Weill Institute for Neuroscience (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., K.G., E.F.C.), and the Departments of Rehabilitation Services (P.M.L.) and Neurology (G.M.A., A.T.-C., K.G.), University of California, San Francisco (UCSF), San Francisco, and the Graduate Program in Bioengineering, University of California, Berkeley-UCSF, Berkeley (S.L.M., J.R.L., E.F.C.).
  • Gopala K Anumanchipalli
    Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
  • Joseph G Makin
    Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, United States of America.
  • Pengfei F Sun
    From the Department of Neurological Surgery (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., M.E.D., E.F.C.), the Weill Institute for Neuroscience (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., K.G., E.F.C.), and the Departments of Rehabilitation Services (P.M.L.) and Neurology (G.M.A., A.T.-C., K.G.), University of California, San Francisco (UCSF), San Francisco, and the Graduate Program in Bioengineering, University of California, Berkeley-UCSF, Berkeley (S.L.M., J.R.L., E.F.C.).
  • Josh Chartier
    Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Joint Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, CA 94720, USA.
  • Maximilian E Dougherty
    From the Department of Neurological Surgery (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., M.E.D., E.F.C.), the Weill Institute for Neuroscience (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., K.G., E.F.C.), and the Departments of Rehabilitation Services (P.M.L.) and Neurology (G.M.A., A.T.-C., K.G.), University of California, San Francisco (UCSF), San Francisco, and the Graduate Program in Bioengineering, University of California, Berkeley-UCSF, Berkeley (S.L.M., J.R.L., E.F.C.).
  • Patricia M Liu
    From the Department of Neurological Surgery (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., M.E.D., E.F.C.), the Weill Institute for Neuroscience (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., K.G., E.F.C.), and the Departments of Rehabilitation Services (P.M.L.) and Neurology (G.M.A., A.T.-C., K.G.), University of California, San Francisco (UCSF), San Francisco, and the Graduate Program in Bioengineering, University of California, Berkeley-UCSF, Berkeley (S.L.M., J.R.L., E.F.C.).
  • Gary M Abrams
    From the Department of Neurological Surgery (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., M.E.D., E.F.C.), the Weill Institute for Neuroscience (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., K.G., E.F.C.), and the Departments of Rehabilitation Services (P.M.L.) and Neurology (G.M.A., A.T.-C., K.G.), University of California, San Francisco (UCSF), San Francisco, and the Graduate Program in Bioengineering, University of California, Berkeley-UCSF, Berkeley (S.L.M., J.R.L., E.F.C.).
  • Adelyn Tu-Chan
    From the Department of Neurological Surgery (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., M.E.D., E.F.C.), the Weill Institute for Neuroscience (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., K.G., E.F.C.), and the Departments of Rehabilitation Services (P.M.L.) and Neurology (G.M.A., A.T.-C., K.G.), University of California, San Francisco (UCSF), San Francisco, and the Graduate Program in Bioengineering, University of California, Berkeley-UCSF, Berkeley (S.L.M., J.R.L., E.F.C.).
  • Karunesh Ganguly
    From the Department of Neurological Surgery (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., M.E.D., E.F.C.), the Weill Institute for Neuroscience (D.A.M., S.L.M., J.R.L., G.K.A., J.G.M., P.F.S., J.C., K.G., E.F.C.), and the Departments of Rehabilitation Services (P.M.L.) and Neurology (G.M.A., A.T.-C., K.G.), University of California, San Francisco (UCSF), San Francisco, and the Graduate Program in Bioengineering, University of California, Berkeley-UCSF, Berkeley (S.L.M., J.R.L., E.F.C.).
  • Edward F Chang
    Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address: edward.chang@ucsf.edu.