Pain remains poorly understood in task-free contexts, limiting our understanding of its neurobehavioral basis in naturalistic settings. Here, we use a multimodal, data-driven approach with intracranial electroencephalography, pain self-reports, and f...
Interictal Epileptiform Discharges (IED) and High Frequency Oscillations (HFO) in intraoperative electrocorticography (ECoG) may guide the surgeon by delineating the epileptogenic zone. We designed a modular spiking neural network (SNN) in a mixed-si...
Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
39265288
OBJECTIVE: Clinical visual intraoperative electrocorticography (ioECoG) reading intends to localize epileptic tissue and improve epilepsy surgery outcome. We aimed to understand whether machine learning (ML) could complement ioECoG reading, how subgr...
Electroencephalography (EEG) or Magnetoencephalography (MEG) source imaging aims to estimate the underlying activated brain sources to explain the observed EEG/MEG recordings. Solving the inverse problem of EEG/MEG Source Imaging (ESI) is challenging...
BACKGROUND: Electroencephalography (EEG) and electrocorticography (ECoG) recordings have been used to decode finger movements by analyzing brain activity. Traditional methods focused on single bandpass power changes for movement decoding, utilizing m...
Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
39608298
INTRODUCTION: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation guidelines hinder the con...
The rate of success of epilepsy surgery, ensuring seizure-freedom, is limited by the lack of epileptogenicity biomarkers. Previous evidence supports the critical role of functional connectivity during seizure generation to characterize the epileptoge...
Interictal epileptiform discharges (IEDs) such as spikes and sharp waves represent pathological electrophysiological activities occurring in epilepsy patients between seizures. IEDs occur preferentially during non-rapid eye movement (NREM) sleep and ...
BACKGROUND: Fast-ripples (FR) are short (∼10 ms) high-frequency oscillations (HFO) between 200 and 600 Hz that are helpful in epilepsy to identify the epileptogenic zone. Our aim is to propose a new method to detect FR that had to be efficient for in...
IEEE journal of biomedical and health informatics
40030514
High-frequency oscillations (HFOs) in intracranial EEG (iEEG) recordings are critical biomarkers for localizing the seizure onset zone (SOZ) in patients with focal refractory epilepsy. Despite their clinical significance, HFO analysis is often compro...