AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Electrocorticography

Showing 1 to 10 of 67 articles

Clear Filters

Naturalistic acute pain states decoded from neural and facial dynamics.

Nature communications
Pain remains poorly understood in task-free contexts, limiting our understanding of its neurobehavioral basis in naturalistic settings. Here, we use a multimodal, data-driven approach with intracranial electroencephalography, pain self-reports, and f...

Robust compression and detection of epileptiform patterns in ECoG using a real-time spiking neural network hardware framework.

Nature communications
Interictal Epileptiform Discharges (IED) and High Frequency Oscillations (HFO) in intraoperative electrocorticography (ECoG) may guide the surgeon by delineating the epileptogenic zone. We designed a modular spiking neural network (SNN) in a mixed-si...

Machine learning for (non-)epileptic tissue detection from the intraoperative electrocorticogram.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: Clinical visual intraoperative electrocorticography (ioECoG) reading intends to localize epileptic tissue and improve epilepsy surgery outcome. We aimed to understand whether machine learning (ML) could complement ioECoG reading, how subgr...

XDL-ESI: Electrophysiological Sources Imaging via explainable deep learning framework with validation on simultaneous EEG and iEEG.

NeuroImage
Electroencephalography (EEG) or Magnetoencephalography (MEG) source imaging aims to estimate the underlying activated brain sources to explain the observed EEG/MEG recordings. Solving the inverse problem of EEG/MEG Source Imaging (ESI) is challenging...

Decoding micro-electrocorticographic signals by using explainable 3D convolutional neural network to predict finger movements.

Journal of neuroscience methods
BACKGROUND: Electroencephalography (EEG) and electrocorticography (ECoG) recordings have been used to decode finger movements by analyzing brain activity. Traditional methods focused on single bandpass power changes for movement decoding, utilizing m...

Metrics for evaluation of automatic epileptogenic zone localization in intracranial electrophysiology.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
INTRODUCTION: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation guidelines hinder the con...

A novel way to use cross-validation to measure connectivity by machine learning allows epilepsy surgery outcome prediction.

NeuroImage
The rate of success of epilepsy surgery, ensuring seizure-freedom, is limited by the lack of epileptogenicity biomarkers. Previous evidence supports the critical role of functional connectivity during seizure generation to characterize the epileptoge...

Annotated interictal discharges in intracranial EEG sleep data and related machine learning detection scheme.

Scientific data
Interictal epileptiform discharges (IEDs) such as spikes and sharp waves represent pathological electrophysiological activities occurring in epilepsy patients between seizures. IEDs occur preferentially during non-rapid eye movement (NREM) sleep and ...

Detecting fast-ripples on both micro- and macro-electrodes in epilepsy: A wavelet-based CNN detector.

Journal of neuroscience methods
BACKGROUND: Fast-ripples (FR) are short (∼10 ms) high-frequency oscillations (HFO) between 200 and 600 Hz that are helpful in epilepsy to identify the epileptogenic zone. Our aim is to propose a new method to detect FR that had to be efficient for in...

Pseudo-HFOs Elimination in iEEG Recordings Using a Robust Residual-Based Dictionary Learning Framework.

IEEE journal of biomedical and health informatics
High-frequency oscillations (HFOs) in intracranial EEG (iEEG) recordings are critical biomarkers for localizing the seizure onset zone (SOZ) in patients with focal refractory epilepsy. Despite their clinical significance, HFO analysis is often compro...