Use of machine learning in prediction of granule particle size distribution and tablet tensile strength in commercial pharmaceutical manufacturing.

Journal: International journal of pharmaceutics
PMID:

Abstract

In the manufacturing of pharmaceutical Oral Solid Dosage (OSD) forms, Particle Size Distribution (PSD) and Tensile Strength (TS) are common in-process tests that are controlled in order to achieve the quality targets of the end-product. The Quality by Design (QbD) concept elaborates process understanding and sufficient controls. However, for older pharmaceutical products upscaled to commercial phase with Quality by Testing (QbT) approach, the knowhow of the product-specific critical parameters is often limited. In this study, two predictive machine learning (ML) models were used for a commercial tablet product, for which historical data of raw materials, production, in-process controls and condition monitoring were available. With the aforementioned data, the aim was to predict the PSD and the TS that indicate the product quality. The feature importance was used to evaluate the parameter importance for the PSD and the TS. Partial dependence, in turn, was used to estimate the parameter impact on the predicted TS. The study illustrates the capability of the ML models to bring additional value for commercial products through the enhanced product-related knowhow.

Authors

  • Eero Mäki-Lohiluoma
    Orion Pharma, Orionintie 1, FI-02200 Espoo, Finland; University of Helsinki, Faculty of Pharmacy, Viikinkaari 5 E, 00014 University of Helsinki, Finland. Electronic address: eero.maki-lohiluoma@orion.fi.
  • Niko Säkkinen
    Top Data Science Ltd., Kuortaneenkatu 2, FI-00510 Helsinki, Finland.
  • Matti Palomäki
    Top Data Science Ltd., Kuortaneenkatu 2, FI-00510 Helsinki, Finland.
  • Oscar Winberg
    Orion Pharma, Orionintie 1, FI-02200 Espoo, Finland.
  • Hung Xuan Ta
    Top Data Science Ltd., Kuortaneenkatu 2, FI-00510 Helsinki, Finland.
  • Timo Heikkinen
    Top Data Science Ltd., Kuortaneenkatu 2, FI-00510 Helsinki, Finland.
  • Eero Kiljunen
    Orion Pharma, Orionintie 1, FI-02200 Espoo, Finland.
  • Ari Kauppinen
    Orion Pharma, Orionintie 1, FI-02200 Espoo, Finland.