ECG data dependency for atrial fibrillation detection based on residual networks.

Journal: Scientific reports
Published Date:

Abstract

Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within the same datasets, which makes their performance generally drops on the external datasets, known as data dependency. For this study, three different databases from PhysioNet were used to investigate the data dependency of deep learning-based AF detection algorithm using the residual neural network (Resnet). Resnet 18, 34, 50 and 152 model were trained with raw electrocardiogram (ECG) signal extracted from independent database. The highest accuracy was about 98-99% which is evaluation results of test dataset from the own database. On the other hand, the lowest accuracy was about 53-92% which was evaluation results of the external dataset extracted from different source. There are data dependency according to the train dataset and the test dataset. However, the data dependency decreased as a large amount of train data.

Authors

  • Hyo-Chang Seo
    Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  • Seok Oh
    Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  • Hyunbin Kim
    Department of Orthopedic Surgery, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea.
  • Segyeong Joo
    Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul, Republic of Korea.