Deep Learning for Voltammetric Sensing in a Living Animal Brain.
Journal:
Angewandte Chemie (International ed. in English)
PMID:
34410032
Abstract
Numerous neurochemicals have been implicated in the modulation of brain function, making them appealing analytes for sensors and diagnostics. However, it is a grand challenge to selectively measure multiple neurochemicals simultaneously in vivo because of their great variations in concentrations, dynamic nature, and composition. Herein, we present a deep learning-based voltammetric sensing platform for the highly selective and simultaneous analysis of three neurochemicals in a living animal brain. The system features a carbon fiber electrode capable of capturing the mixed dynamics of a neurotransmitter, neuromodulator, and ions. Then a powerful deep neural network is employed to resolve individual chemical and spatial-temporal information. With this, a single electrochemical measurement reveals an interplaying concentration changes of dopamine, ascorbate, and ions in living rat brain, which is unobtainable with existing analytical methodologies. Our strategy provides a powerful means to expedite research in neuroscience and empower sensing-aided diagnostic applications.