Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.

Journal: Briefings in bioinformatics
Published Date:

Abstract

Antimicrobial peptides (AMPs) are a unique and diverse group of molecules that play a crucial role in a myriad of biological processes and cellular functions. AMP-related studies have become increasingly popular in recent years due to antimicrobial resistance, which is becoming an emerging global concern. Systematic experimental identification of AMPs faces many difficulties due to the limitations of current methods. Given its significance, more than 30 computational methods have been developed for accurate prediction of AMPs. These approaches show high diversity in their data set size, data quality, core algorithms, feature extraction, feature selection techniques and evaluation strategies. Here, we provide a comprehensive survey on a variety of current approaches for AMP identification and point at the differences between these methods. In addition, we evaluate the predictive performance of the surveyed tools based on an independent test data set containing 1536 AMPs and 1536 non-AMPs. Furthermore, we construct six validation data sets based on six different common AMP databases and compare different computational methods based on these data sets. The results indicate that amPEPpy achieves the best predictive performance and outperforms the other compared methods. As the predictive performances are affected by the different data sets used by different methods, we additionally perform the 5-fold cross-validation test to benchmark different traditional machine learning methods on the same data set. These cross-validation results indicate that random forest, support vector machine and eXtreme Gradient Boosting achieve comparatively better performances than other machine learning methods and are often the algorithms of choice of multiple AMP prediction tools.

Authors

  • Jing Xu
    First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China.
  • Fuyi Li
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.
  • AndrĂ© Leier
    Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
  • Dongxu Xiang
    Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
  • Hsin-Hui Shen
    Department of Biochemistry & Molecular Biology and Department of Materials Science & Engineering, Monash University, Australia.
  • Tatiana T Marquez Lago
    Departments of Genetics and Microbiology, UAB School of Medicine, USA.
  • Jian Li
    Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Dong-Jun Yu
  • Jiangning Song
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.