A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information.

Journal: Briefings in bioinformatics
PMID:

Abstract

Recently, language representation models have drawn a lot of attention in the natural language processing field due to their remarkable results. Among them, bidirectional encoder representations from transformers (BERT) has proven to be a simple, yet powerful language model that achieved novel state-of-the-art performance. BERT adopted the concept of contextualized word embedding to capture the semantics and context of the words in which they appeared. In this study, we present a novel technique by incorporating BERT-based multilingual model in bioinformatics to represent the information of DNA sequences. We treated DNA sequences as natural sentences and then used BERT models to transform them into fixed-length numerical matrices. As a case study, we applied our method to DNA enhancer prediction, which is a well-known and challenging problem in this field. We then observed that our BERT-based features improved more than 5-10% in terms of sensitivity, specificity, accuracy and Matthews correlation coefficient compared to the current state-of-the-art features in bioinformatics. Moreover, advanced experiments show that deep learning (as represented by 2D convolutional neural networks; CNN) holds potential in learning BERT features better than other traditional machine learning techniques. In conclusion, we suggest that BERT and 2D CNNs could open a new avenue in biological modeling using sequence information.

Authors

  • Nguyen Quoc Khanh Le
    In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan. Electronic address: khanhlee@tmu.edu.tw.
  • Quang-Thai Ho
    Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan. Electronic address: hoquangthaiholy@gmail.com.
  • Trinh-Trung-Duong Nguyen
    Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan.
  • Yu-Yen Ou
    Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan. Electronic address: yien@saturn.yzu.edu.tw.