A deep learning model for burn depth classification using ultrasound imaging.

Journal: Journal of the mechanical behavior of biomedical materials
Published Date:

Abstract

Identification of burn depth with sufficient accuracy is a challenging problem. This paper presents a deep convolutional neural network to classify burn depth based on altered tissue morphology of burned skin manifested as texture patterns in the ultrasound images. The network first learns a low-dimensional manifold of the unburned skin images using an encoder-decoder architecture that reconstructs it from ultrasound images of burned skin. The encoder is then re-trained to classify burn depths. The encoder-decoder network is trained using a dataset comprised of B-mode ultrasound images of unburned and burned ex vivo porcine skin samples. The classifier is developed using B-mode images of burned in situ skin samples obtained from freshly euthanized postmortem pigs. The performance metrics obtained from 20-fold cross-validation show that the model can identify deep-partial thickness burns, which is the most difficult to diagnose clinically, with 99% accuracy, 98% sensitivity, and 100% specificity. The diagnostic accuracy of the classifier is further illustrated by the high area under the curve values of 0.99 and 0.95, respectively, for the receiver operating characteristic and precision-recall curves. A post hoc explanation indicates that the classifier activates the discriminative textural features in the B-mode images for burn classification. The proposed model has the potential for clinical utility in assisting the clinical assessment of burn depths using a widely available clinical imaging device.

Authors

  • Sangrock Lee
    Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
  • Rahul
    Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. Electronic address: rahul@rpi.edu.
  • James Lukan
    Department of Surgery, University at Buffalo-State University of New York, Buffalo, NY, 14215, USA.
  • Tatiana Boyko
    Department of Surgery, University at Buffalo-State University of New York, Buffalo, NY, 14215, USA.
  • Kateryna Zelenova
    Department of Surgery, University at Buffalo-State University of New York, Buffalo, NY, 14215, USA.
  • Basiel Makled
    U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, 32826, USA.
  • Conner Parsey
    U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, 32826, USA.
  • Jack Norfleet
    U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, 32826, USA.
  • Suvranu De
    Rensselaer Polytechnic Institute, Troy, New York, USA.