Predicting cancer outcomes with radiomics and artificial intelligence in radiology.

Journal: Nature reviews. Clinical oncology
PMID:

Abstract

The successful use of artificial intelligence (AI) for diagnostic purposes has prompted the application of AI-based cancer imaging analysis to address other, more complex, clinical needs. In this Perspective, we discuss the next generation of challenges in clinical decision-making that AI tools can solve using radiology images, such as prognostication of outcome across multiple cancers, prediction of response to various treatment modalities, discrimination of benign treatment confounders from true progression, identification of unusual response patterns and prediction of the mutational and molecular profile of tumours. We describe the evolution of and opportunities for AI in oncology imaging, focusing on hand-crafted radiomic approaches and deep learning-derived representations, with examples of their application for decision support. We also address the challenges faced on the path to clinical adoption, including data curation and annotation, interpretability, and regulatory and reimbursement issues. We hope to demystify AI in radiology for clinicians by helping them to understand its limitations and challenges, as well as the opportunities it provides as a decision-support tool in cancer management.

Authors

  • Kaustav Bera
    Department of Biomedical Engineering, Case Western Reserve University School of Engineering, 2071 Martin Luther King Dr, Cleveland, OH 44106-7207 (M. Khorrami, K.B., A.M.); Departments of Internal Medicine (M. Khunger) and Solid Tumor Oncology (A.Z., P.P.), Cleveland Clinic, Cleveland, Ohio; Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.); Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio (P.F.); Department of Hematology and Oncology, New York University, New York, NY (V.V.); Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A.M.).
  • Nathaniel Braman
    Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
  • Amit Gupta
    Department of Cardiology, SKIMS, Srinagar, India. Electronic address: amitcardio12@gmail.com.
  • Vamsidhar Velcheti
    Department of Biomedical Engineering, Case Western Reserve University School of Engineering, 2071 Martin Luther King Dr, Cleveland, OH 44106-7207 (M. Khorrami, K.B., A.M.); Departments of Internal Medicine (M. Khunger) and Solid Tumor Oncology (A.Z., P.P.), Cleveland Clinic, Cleveland, Ohio; Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.); Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio (P.F.); Department of Hematology and Oncology, New York University, New York, NY (V.V.); Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A.M.).
  • Anant Madabhushi
    Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.