AIMC Topic: Radiometry

Clear Filters Showing 1 to 10 of 121 articles

The dosimetric impacts of ct-based deep learning autocontouring algorithm for prostate cancer radiotherapy planning dosimetric accuracy of DirectORGANS.

BMC urology
PURPOSE: In study, we aimed to dosimetrically evaluate the usability of a new generation autocontouring algorithm (DirectORGANS) that automatically identifies organs and contours them directly in the computed tomography (CT) simulator before creating...

AI-enhanced patient-specific dosimetry in I-131 planar imaging with a single oblique view.

Scientific reports
This study aims to enhance the dosimetry accuracy in I planar imaging by utilizing a single oblique view and Monte Carlo (MC) validated dose point kernels (DPKs) alongside the integration of artificial intelligence (AI) for accurate dose prediction w...

Characterization of Effective Half-Life for Instant Single-Time-Point Dosimetry Using Machine Learning.

Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Single-time-point (STP) image-based dosimetry offers a more convenient approach for clinical practice in radiopharmaceutical therapy (RPT) compared with conventional multiple-time-point image-based dosimetry. Despite numerous advancements, current ST...

Evaluating the dosimetric and positioning accuracy of a deep learning based synthetic-CT model for liver radiotherapy treatment planning.

Biomedical physics & engineering express
An MRI-only workflow requires synthetic computed tomography (sCT) images to enable dose calculation. This study evaluated the dosimetric and patient positioning accuracy of deep learning-generated sCT for liver radiotherapy.sCT images were generated ...

Rapid dose prediction for lung CyberKnife radiotherapy plans utilizing a deep learning approach by incorporating dosimetric features delivered by noncoplanar beams.

Biomedical physics & engineering express
. The dose distribution of lung cancer patients treated with the CyberKnife (CK) system is influenced by various factors, including tumor location and the direction of CK beams. The objective of this study is to present a deep learning approach that ...

Uncertainty quantification for CT dosimetry based on 10 281 subjects using automatic image segmentation and fast Monte Carlo calculations.

Medical physics
BACKGROUND: Computed tomography (CT) scans are a major source of medical radiation exposure worldwide. In countries like China, the frequency of CT scans has grown rapidly, thus making available a large volume of organ dose information. With modern c...

Proton dose calculation with transformer: Transforming spot map to dose.

Medical physics
BACKGROUND: Conventional proton dose calculation methods are either time- and resource-intensive, like Monte Carlo (MC) simulations, or they sacrifice accuracy, as seen with analytical methods. This trade-off between computational efficiency and accu...

Deep learning-based segmentation of head and neck organs at risk on CBCT images with dosimetric assessment for radiotherapy.

Physics in medicine and biology
Cone beam computed tomography (CBCT) has become an essential tool in head and neck cancer (HNC) radiotherapy (RT) treatment delivery. Automatic segmentation of the organs at risk (OARs) on CBCT can trigger and accelerate treatment replanning but is s...

Initial characterization of a novel dual-robot orthovoltage radiotherapy system.

Biomedical physics & engineering express
Adequate access to radiotherapy is a critical global concern affecting low-resource settings such as low- and middle-income countries and rural regions. We propose to reduce this disparity by developing a novel low-cost radiotherapy device that treat...

Power absorption and temperature rise in deep learning based head models for local radiofrequency exposures.

Physics in medicine and biology
Computational uncertainty and variability of power absorption and temperature rise in humans for radiofrequency (RF) exposure is a critical factor in ensuring human protection. This aspect has been emphasized as a priority. However, accurately modeli...